Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Farm to Fork (F2F) Strategy under the Green Deal aims to halve nutrient losses by 2030 in the European Union (EU). Here, using the nitrogen surplus as an indicator for nitrogen losses in agricultural areas, we explore a range of scenarios for nitrogen surplus reduction across EU landscapes. We identify four nitrogen surplus typologies, each responding differently to input reduction. A 20% decrease in synthetic fertilizer alone is projected to reduce the nitrogen surplus by only 10–16%, falling short of F2F goals. Specific top-down scenarios such as reducing synthetic fertilizer by 43% and animal manure by 4%, coupled with improved technological and management practices, can achieve a reduction of up to 30–45% in nitrogen surplus. Among the most ambitious scenarios, only a handful of EU countries (four to five) may meet the intended F2F nitrogen pollution targets. Achieving F2F goals requires region-specific strategies to reduce nitrogen use while improving efficiency and sustaining productivity.more » « less
-
ABSTRACT The deterioration of stream water quality threatens ecosystems and human water security worldwide. Effective risk assessment and mitigation requires spatial and temporal data from water quality monitoring networks (WQMNs). However, it remains challenging to quantify how well current WQMNs capture the spatiotemporal variability of stream water quality, making their evaluation and optimisation an important task for water management. Here, we investigate the spatial and temporal variability of concentrations of three constituents, representing different input pathways: anthropogenic (NO3−), geogenic (Ca2+) and biogenic (total organic carbon, TOC) at 1215 stations in three major river basins in Germany. We present a typology to classify each constituent on the basis of magnitude, range and dominance of spatial versus temporal variability. We found that mean measures of spatial variability dominated over those for temporal variability for NO3−and Ca2+, while for TOC they were approximately equal. The observed spatiotemporal patterns were robustly explained by a combination of local landscape composition and network‐scale landscape heterogeneity, as well as the degree of spatial auto‐correlation of water quality. Our analysis suggests that river network position systematically influences the inference of spatial variability more than temporal variability. By employing a space–time variance framework, this study provides a step towards optimising WQMNs to create water quality data sets that are balanced in time and space, ultimately improving the efficiency of resource allocation and maximising the value of the information obtained.more » « less
-
Abstract The need to develop and provide integrated observation systems to better understand and manage global and regional environmental change is one of the major challenges facing Earth system science today. In 2008, the German Helmholtz Association took up this challenge and launched the German research infrastructure TERrestrial ENvironmental Observatories (TERENO). The aim of TERENO is the establishment and maintenance of a network of observatories as a basis for an interdisciplinary and long‐term research program to investigate the effects of global environmental change on terrestrial ecosystems and their socio‐economic consequences. State‐of‐the‐art methods from the field of environmental monitoring, geophysics, remote sensing, and modeling are used to record and analyze states and fluxes in different environmental disciplines from groundwater through the vadose zone, surface water, and biosphere, up to the lower atmosphere. Over the past 15 years we have collectively gained experience in operating a long‐term observing network, thereby overcoming unexpected operational and institutional challenges, exceeding expectations, and facilitating new research. Today, the TERENO network is a key pillar for environmental modeling and forecasting in Germany, an information hub for practitioners and policy stakeholders in agriculture, forestry, and water management at regional to national levels, a nucleus for international collaboration, academic training and scientific outreach, an important anchor for large‐scale experiments, and a trigger for methodological innovation and technological progress. This article describes TERENO's key services and functions, presents the main lessons learned from this 15‐year effort, and emphasizes the need to continue long‐term integrated environmental monitoring programmes in the future.more » « less
An official website of the United States government
